In case-specific random forests (CSRF), random forests are built specific to the cases of interest. Instead of using equal probabilities, the cases are weighted according to their difference to the case of interest.
Arguments
- formula
Object of class
formula
orcharacter
describing the model to fit.- training_data
Training data of class
data.frame
.- test_data
Test data of class
data.frame
.- params1
Parameters for the proximity random forest grown in the first step.
- params2
Parameters for the prediction random forests grown in the second step.
- verbose
Logical indicating whether or not to print computation progress.
Details
The algorithm consists of 3 steps:
Grow a random forest on the training data
For each observation of interest (test data), the weights of all training observations are computed by counting the number of trees in which both observations are in the same terminal node.
For each test observation, grow a weighted random forest on the training data, using the weights obtained in step 2. Predict the outcome of the test observation as usual.
In total, n+1 random forests are grown, where n is the number observations in the test dataset. For details, see Xu et al. (2014).
References
Xu, R., Nettleton, D. & Nordman, D.J. (2014). Case-specific random forests. J Comp Graph Stat 25:49-65. doi:10.1080/10618600.2014.983641 .
Examples
## Split in training and test data
train.idx <- sample(nrow(iris), 2/3 * nrow(iris))
iris.train <- iris[train.idx, ]
iris.test <- iris[-train.idx, ]
## Run case-specific RF
csrf(Species ~ ., training_data = iris.train, test_data = iris.test,
params1 = list(num.trees = 50, mtry = 4),
params2 = list(num.trees = 5))
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa setosa versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor virginica
#> [19] versicolor versicolor versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor versicolor versicolor versicolor versicolor
#> [31] versicolor virginica virginica virginica virginica virginica
#> [37] virginica virginica versicolor virginica virginica virginica
#> [43] versicolor virginica virginica virginica virginica virginica
#> [49] virginica virginica
#> Levels: setosa versicolor virginica